Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Parasitol Drugs Drug Resist ; 24: 100524, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38346379

RESUMO

Recently, a S168T variant in the acetylcholine receptor subunit ACR-8 was associated with levamisole resistance in the parasitic helminth Haemonchus contortus. Here, we used the Xenopus laevis oocyte expression system and two-electrode voltage-clamp electrophysiology to measure the functional impact of this S168T variant on the H. contortus levamisole-sensitive acetylcholine receptor, L-AChR-1.1. Expression of the ACR-8 S168T variant significantly reduced the current amplitude elicited by levamisole compared to acetylcholine, with levamisole changing from a full to partial agonist on the recombinant L-AChR. Functional validation of the S168T mutation on modulating levamisole activity at the receptor level highlights its critical importance as both a mechanism and a marker of levamisole resistance.


Assuntos
Anti-Helmínticos , Haemonchus , Parasitos , Animais , Levamisol/farmacologia , Haemonchus/genética , Haemonchus/metabolismo , Antinematódeos/farmacologia , Receptores Colinérgicos/genética , Parasitos/metabolismo , Resistência a Medicamentos/genética , Anti-Helmínticos/farmacologia , Anti-Helmínticos/metabolismo
2.
Int J Parasitol ; 54(2): 89-98, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37652224

RESUMO

The heartworm, Dirofilaria immitis, is a filarial parasitic nematode responsible for significant morbidity and mortality in wild and domesticated canids. Resistance to macrocyclic lactone drug prevention represents a significant threat to parasite control and has prompted investigations to understand the genetic determinants of resistance. This study aimed to improve the genomic resources of D. immitis to enable a more precise understanding of how genetic variation is distributed within and between parasite populations worldwide, which will inform the likelihood and rate by which parasites, and in turn, resistant alleles, might spread. We have guided the scaffolding of a recently published genome assembly for D. immitis (ICBAS_JMDir_1.0) using the chromosomal-scale reference genomes of Brugia malayi and Onchocerca volvulus, resulting in an 89.5 Mb assembly composed of four autosomal- and one sex-linked chromosomal-scale scaffolds representing 99.7% of the genome. Publicly available and new whole-genome sequencing data from 32 D. immitis samples from Australia, Italy and the USA were assessed using principal component analysis, nucleotide diversity (Pi) and absolute genetic divergence (Dxy) to characterise the global genetic structure and measure within- and between-population diversity. These population genetic analyses revealed broad-scale genetic structure among globally diverse samples and differences in genetic diversity between populations; however, fine-scale subpopulation analysis was limited and biased by differences between sample types. Finally, we mapped single nucleotide polymorphisms previously associated with macrocyclic lactone resistance in the new genome assembly, revealing the physical linkage of high-priority variants on chromosome 3, and determined their frequency in the studied populations. This new chromosomal assembly for D. immitis now allows for a more precise investigation of selection on genome-wide genetic variation and will enhance our understanding of parasite transmission and the spread of genetic variants responsible for resistance to treatment.


Assuntos
Dirofilaria immitis , Dirofilariose , Doenças do Cão , Cães , Animais , Dirofilaria immitis/genética , Metagenômica , Genoma Helmíntico , Lactonas , Austrália , Dirofilariose/epidemiologia , Doenças do Cão/parasitologia
3.
Mol Cell Probes ; 73: 101946, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38097144

RESUMO

Haemonchus contortus is a parasitic haematophagous nematode that primarily affects small ruminants and causes significant economic loss to the global livestock industry. Treatment of haemonchosis typically relies on broad-spectrum anthelmintics, resistance to which is an important cause of treatment failure. Resistance to levamisole remains less widespread than to other major anthelmintic classes, prompting the need for more effective and accurate surveillance to maintain its efficacy. Loop-primer endonuclease cleavage loop-mediated isothermal amplification (LEC-LAMP) is a recently developed diagnostic method that facilitates multiplex target detection with single nucleotide polymorphism (SNP) specificity and portable onsite testing. In this study, we designed a new LEC-LAMP assay and applied it to detect the levamisole resistance marker S168T in H. contortus. We explored multiplexing probes for both the resistant S168T and the susceptible S168 alleles in a single-tube assay. We then included a generic probe to detect the acr-8 gene in the multiplex assay, which could facilitate the quantification of both resistance markers and overall genetic material from H. contortus in a single step. Our results showed promising application of these technologies, demonstrating a proof-of-concept assay which is amenable to detection of resistance alleles within the parasite population, with the potential for multiplex detection, and point-of-care application enabled by lateral flow end-point detection. However, further optimisation and validation is necessary.


Assuntos
Anti-Helmínticos , Haemonchus , Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico , Animais , Levamisol/farmacologia , Haemonchus/genética , Resistência a Medicamentos/genética , Anti-Helmínticos/farmacologia , Anti-Helmínticos/uso terapêutico
4.
Int J Parasitol ; 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37993016

RESUMO

National programs in Africa have expanded their objectives from control of onchocerciasis (river blindness) as a public health problem to elimination of parasite transmission, motivated by the reduction of Onchocerca volvulus infection prevalence in many African meso- and hyperendemic areas due to mass drug administration of ivermectin (MDAi). Given the large, contiguous hypo-, meso-, and hyperendemic areas, sustainable elimination of onchocerciasis in sub-Saharan Africa requires delineation of geographic boundaries for parasite transmission zones, so that programs can consider the risk of parasite re-introduction through vector or human migration from areas with ongoing transmission when making decisions to stop MDAi. We propose that transmission zone boundaries can be delineated by characterising the parasite genetic population structure within and between potential zones. We analysed whole mitochondrial genome sequences of 189 O. volvulus adults to determine the pattern of genetic similarity across three West African countries: Ghana, Mali, and Côte d'Ivoire. Population genetic structure indicates that parasites from villages near the Pru, Daka, and Black Volta rivers in central Ghana belong to one parasite population, indicating that the assumption that river basins constitute individual transmission zones is not supported by the data. Parasites from Mali and Côte d'Ivoire are genetically distinct from those from Ghana. This research provides the basis for developing tools for elimination programs to delineate transmission zones, to estimate the risk of parasite re-introduction via vector or human movement when intervention is stopped in one area while transmission is ongoing in others, to identify the origin of infections detected post-treatment cessation, and to investigate whether persisting prevalence despite ongoing interventions in one area is due to parasites imported from others.

5.
Sci Data ; 10(1): 775, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37935722

RESUMO

The flatworm Schistosoma mansoni is an important but neglected pathogen that causes the disease schistosomiasis in millions of people worldwide. The parasite has a complex life cycle, undergoing sexual reproduction in a mammalian host and asexual replication in a snail host. Understanding the molecular mechanisms that the parasite uses to transition between hosts and develop into dimorphic reproductively competent adults may reveal new strategies for control. We present the first comprehensive transcriptomic analysis of S. mansoni, from eggs to sexually naïve worms. Focusing on eight life stages spanning free-living water-borne and parasitic stages from both intermediate and definitive hosts, we have generated deep RNA-seq data for five replicates per group for a total of 75 data sets. The data were produced using a single approach to increase the accuracy of stage-to-stage comparisons and made accessible via a user-friendly tool to visualise and explore gene expression ( https://lifecycle.schisto.xyz/ ). These data are valuable for understanding the biology and sex-specific development of schistosomes and the interpretation of complementary genomic and functional genetics studies.


Assuntos
Schistosoma mansoni , Transcriptoma , Animais , Feminino , Humanos , Masculino , Perfilação da Expressão Gênica , Schistosoma mansoni/genética , Esquistossomose mansoni/metabolismo , Esquistossomose mansoni/parasitologia , Fatores Sexuais
6.
Sci Rep ; 13(1): 8744, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37253926

RESUMO

Our knowledge of the diet of wild octopus paralarvae, Octopus vulgaris, is restricted to the first 2 weeks of its planktonic phase when they are selective hunters found near the coastline. These small paralarvae, bearing only three suckers per arm, are transported by oceanic currents from the coast towards offshore waters, where they complete the planktonic phase over 2 months. Here, we have investigated the trophic ecology of O. vulgaris paralarvae in two contrasting upwelling sub-regions of the Iberian Canary current (ICC) eastern boundary upwelling system and have evaluated dietary change as paralarvae develop (inferred by counting the number of suckers per arm, ranging from three to 15) along the coastal-oceanic gradient during their planktonic phase. Using high-throughput amplicon sequencing, we have characterised the diet of 100 paralarvae collected along the Northwest Iberian Peninsula (n = 65, three to five suckers per arm) and off the west coast of Morocco (n = 35, three to 15 suckers per arm), identifying up to 87 different prey species. The diet of paralarvae varied along the ICC, with crabs (53.4%), siphonophores (12.2%), copepods (12.3%), cnidarians (8.4%) and pteropods (3.7%) accounting for 90% of the variability detected off NW Iberian Peninsula, whereas off W Morocco, crabs (46.2%), copepods (23.1%), cnidarians (12.9%), krill (9.3%) and fishes (4.2%) explained 95.6% of the variability observed using frequency of observance (FOO%) data. Ontogenetic changes in the diet based on groups of paralarvae with similar numbers per arm were evidenced by the decreasing contribution of coastal meroplankton and an increase in oceanic holoplankton, including siphonophores, copepods, pteropods and krill. Trophic niche breadth values ranged from 0.06 to 0.67, with averaged values ranging from 0.23 to 0.33 (generalist = 1 and specialist = 0), suggesting that O. vulgaris paralarvae are selective predators through their ontogenetic transition between coastal and oceanic environments.


Assuntos
Octopodiformes , Animais , Ecologia , Estado Nutricional , Dieta , Peixes
7.
Int J Parasitol ; 53(2): 69-79, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36641060

RESUMO

The identification of gastrointestinal helminth infections of humans and livestock almost exclusively relies on the detection of eggs or larvae in faeces, followed by manual counting and morphological characterisation to differentiate species using microscopy-based techniques. However, molecular approaches based on the detection and quantification of parasite DNA are becoming more prevalent, increasing the sensitivity, specificity and throughput of diagnostic assays. High-throughput sequencing, from single PCR targets through to the analysis of whole genomes, offers significant promise towards providing information-rich data that may add value beyond traditional and conventional molecular approaches; however, thus far, its utility has not been fully explored to detect helminths in faecal samples. In this study, low-depth whole genome sequencing, i.e. genome skimming, has been applied to detect and characterise helminth diversity in a set of helminth-infected human and livestock faecal material. The strengths and limitations of this approach are evaluated using three methods to characterise and differentiate metagenomic sequencing data based on (i) mapping to whole mitochondrial genomes, (ii) whole genome assemblies, and (iii) a comprehensive internal transcribed spacer 2 (ITS2) database, together with validation using quantitative PCR (qPCR). Our analyses suggest that genome skimming can successfully identify most single and multi-species infections reported by qPCR and can provide sufficient coverage within some samples to resolve consensus mitochondrial genomes, thus facilitating phylogenetic analyses of selected genera, e.g. Ascaris spp. Key to this approach is both the availability and integrity of helminth reference genomes, some of which are currently contaminated with bacterial and host sequences. The success of genome skimming of faecal DNA is dependent on the availability of vouchered sequences of helminths spanning both taxonomic and geographic diversity, together with methods to detect or amplify minute quantities of parasite nucleic acids in mixed samples.


Assuntos
Helmintos , Parasitos , Animais , Humanos , Gado , Filogenia , Helmintos/genética , DNA
8.
Gates Open Res ; 6: 62, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36540062

RESUMO

Background: Soil-transmitted helminths (STH) are targeted for control through mass drug-administration campaigns to prevent morbidity affecting at-risk groups in endemic regions. Although broadly successful, the use of albendazole and mebendazole achieved variable progress, with deficiencies against Trichuris trichiura and a predictable low efficacy against Strongyloides stercoralis. Novel drug combinations offer a potential solution, providing they can be delivered safely and maintain efficacy against all STH species. Here we present the protocol of a clinical trial to evaluate a fixed-dose combination (FDC) tablet containing albendazole and ivermectin that will be compared against albendazole against STH . Methods: An adaptive phase II/III randomized controlled trial will be undertaken in STH endemic sites in Ethiopia, Kenya and Mozambique to evaluate an oral FDC of 400 mg albendazole and either 9- or 18 mg ivermectin. FDC will be administered as a single dose or single doses over three-consecutive days and assessed against a single dose of 400 mg albendazole. In the phase II trial, 126 T. trichiura-infected children weighting 15 to 45 kg will be treated in a dose-escalation manner to determine safety objectives. In the phase III trial, 1097 participants aged 5 to 18 years old infected with T. trichiura, hookworm and S. stercoralis will be recruited to determine safety and efficacy. The trial will be open-label with blinded outcome assessors. Cure rate measured 21-days after-treatment in duplicate Kato-Katz is the primary efficacy outcome. Secondary objectives include efficacy evaluation by quantitative polymerase chain reaction (PCR) as an outcome measurement, description of pharmacokinetic parameters, palatability and acceptability evaluations, and monitoring of anthelmintic resistance. Conclusions: This trial with registrational goals seeks to evaluate an innovative fixed-dose combination of albendazole and ivermectin co-formulated tablets, with the goal of providing an anthelmintic regimen with improved efficacy and spectrum of coverage against STH. ClinicalTrials.gov registration: NCT05124691 (18/11/2021).

9.
Cell Rep ; 41(3): 111522, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36261007

RESUMO

Like other pathogens, parasitic helminths can rapidly evolve resistance to drug treatment. Understanding the genetic basis of anthelmintic drug resistance in parasitic nematodes is key to tracking its spread and improving the efficacy and sustainability of parasite control. Here, we use an in vivo genetic cross between drug-susceptible and multi-drug-resistant strains of Haemonchus contortus in a natural host-parasite system to simultaneously map resistance loci for the three major classes of anthelmintics. This approach identifies new alleles for resistance to benzimidazoles and levamisole and implicates the transcription factor cky-1 in ivermectin resistance. This gene is within a locus under selection in ivermectin-resistant populations worldwide; expression analyses and functional validation using knockdown experiments support that cky-1 is associated with ivermectin survival. Our work demonstrates the feasibility of high-resolution forward genetics in a parasitic nematode and identifies variants for the development of molecular diagnostics to combat drug resistance in the field.


Assuntos
Anti-Helmínticos , Ivermectina , Ivermectina/farmacologia , Levamisol , Anti-Helmínticos/farmacologia , Anti-Helmínticos/uso terapêutico , Resistência a Medicamentos/genética , Benzimidazóis , Genômica , Fatores de Transcrição
10.
Int J Parasitol ; 52(12): 763-774, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36208676

RESUMO

Understanding the composition of gastrointestinal nematode communities may help to mitigate or exploit parasite adaptations within their host. We have used nemabiome deep amplicon sequencing of internal transcribed spacer-2 (ITS-2) ribosomal DNA to describe the temporal and host species composition of gastrointestinal nematode communities following sampling of six Scottish ponies across 57 months. In the absence of parasite control, each horse showed seasonal trends of increases and decreases in faecal egg counts, consistent with the epidemiology of equine strongylid parasites, however, the composition of parasites within individuals changed over time. Sixteen presumptive strongylid species were identified in each of the horses, 13 of which were distributed in a complex clade together with small numbers of amplicon sequences which could not be classified beyond the Cyathostominae subfamily level. Egg shedding of seven trichostrongylid species, which had previously been identified in co-grazed Soay sheep, was identified during the early spring. Faecal egg counts and the percentage of amplicon sequences assigned to each gastrointestinal nematode species were combined to describe their relative abundance across both host and time. Significant differences in species diversity between horses and between months were observed, being greatest from March to May and least from October to December. The magnitude of the individual horse effect varied between months and, conversely, the magnitude of the seasonal effect varied between individual horses. The most abundant gastrointestinal nematode in each of the horses was Cylicostephanus longibursatus (46.6% overall), while the abundance of the other strongylid species varied between horses and relative to each other. Patent C. longibursatus infections over the winter months might represent a genetic adaptation towards longer adult worm survival, or a lower rate of developmental arrest in the autumn. This study provides insight into highly complex phylogenetic relationships between closely related cyathostomin species; and describes the dynamics of egg shedding and pasture contamination of co-infecting equine gastrointestinal nematode communities. The results could be applied to determine how climatic and management factors affect the equilibrium between hosts and their parasites, and to inform the development of sustainable gastrointestinal nematode control strategies for different host species.


Assuntos
Nematoides , Strongyloidea , Ovinos , Cavalos , Animais , Contagem de Ovos de Parasitas/veterinária , Filogenia , Strongyloidea/genética , Fezes/parasitologia , Genômica , Escócia
11.
Artigo em Inglês | MEDLINE | ID: mdl-35970104

RESUMO

Haemonchus contortus is a haematophagous parasitic nematode that infects small ruminants and causes significant animal health concerns and economic losses within the livestock industry on a global scale. Treatment primarily depends on broad-spectrum anthelmintics, however, resistance is established or rapidly emerging against all major drug classes. Levamisole (LEV) remains an important treatment option for parasite control, as resistance to LEV is less prevalent than to members of other major classes of anthelmintics. LEV is an acetylcholine receptor (AChR) agonist that, when bound, results in paralysis of the worm. Numerous studies implicated the AChR sub-unit, ACR-8, in LEV sensitivity and in particular, the presence of a truncated acr-8 transcript or a deletion in the acr-8 locus in some resistant isolates. Recently, a single non-synonymous SNP in acr-8 conferring a serine-to-threonine substitution (S168T) was identified that was strongly associated with LEV resistance. Here, we investigate the role of genetic variation at the acr-8 locus in a controlled genetic cross between the LEV susceptible MHco3(ISE) and LEV resistant MHco18(UGA2004) isolates of H. contortus. Using single worm PCR assays, we found that the presence of S168T was strongly associated with LEV resistance in the parental isolates and F3 progeny of the genetic cross surviving LEV treatment. We developed and optimised an allele-specific PCR assay for the detection of S168T and validated the assay using laboratory isolates and field samples that were phenotyped for LEV resistance. In the LEV-resistant field population, a high proportion (>75%) of L3 encoded the S168T variant, whereas the variant was absent in the susceptible isolates studied. These data further support the potential role of acr-8 S168T in LEV resistance, with the allele-specific PCR providing an important step towards establishing a sensitive molecular diagnostic test for LEV resistance.


Assuntos
Anti-Helmínticos , Hemoncose , Haemonchus , Animais , Levamisol/farmacologia , Resistência a Medicamentos/genética , Anti-Helmínticos/farmacologia , Anti-Helmínticos/uso terapêutico , Receptores Colinérgicos/genética , Hemoncose/tratamento farmacológico , Hemoncose/veterinária , Hemoncose/parasitologia
12.
PLoS Negl Trop Dis ; 16(8): e0010188, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35981002

RESUMO

Populations within schistosomiasis control areas, especially those in Africa, are recommended to receive regular mass drug administration (MDA) with praziquantel (PZQ) as the main strategy for controlling the disease. The impact of PZQ treatment on schistosome genetics remains poorly understood, and is limited by a lack of high-resolution genetic data on the population structure of parasites within these control areas. We generated whole-genome sequence data from 174 individual miracidia collected from both children and adults from fishing communities on islands in Lake Victoria in Uganda that had received either annual or quarterly MDA with PZQ over four years, including samples collected immediately before and four weeks after treatment. Genome variation within and between samples was characterised and we investigated genomic signatures of natural selection acting on these populations that could be due to PZQ treatment. The parasite population on these islands was more diverse than found in nearby villages on the lake shore. We saw little or no genetic differentiation between villages, or between the groups of villages with different treatment intensity, but slightly higher genetic diversity within the pre-treatment compared to post-treatment parasite populations. We identified classes of genes significantly enriched within regions of the genome with evidence of recent positive selection among post-treatment and intensively treated parasite populations. The differential selection observed in post-treatment and pre-treatment parasite populations could be linked to any reduced susceptibility of parasites to praziquantel treatment.


Assuntos
Anti-Helmínticos , Esquistossomose mansoni , Adulto , Animais , Anti-Helmínticos/uso terapêutico , Criança , Humanos , Preparações Farmacêuticas , Praziquantel/uso terapêutico , Schistosoma mansoni/genética , Esquistossomose mansoni/tratamento farmacológico , Esquistossomose mansoni/epidemiologia , Esquistossomose mansoni/parasitologia , Uganda/epidemiologia
13.
Nat Commun ; 13(1): 3888, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35794092

RESUMO

The neglected tropical disease trichuriasis is caused by the whipworm Trichuris trichiura, a soil-transmitted helminth that has infected humans for millennia. Today, T. trichiura infects as many as 500 million people, predominantly in communities with poor sanitary infrastructure enabling sustained faecal-oral transmission. Using whole-genome sequencing of geographically distributed worms collected from human and other primate hosts, together with ancient samples preserved in archaeologically-defined latrines and deposits dated up to one thousand years old, we present the first population genomics study of T. trichiura. We describe the continent-scale genetic structure between whipworms infecting humans and baboons relative to those infecting other primates. Admixture and population demographic analyses support a stepwise distribution of genetic variation that is highest in Uganda, consistent with an African origin and subsequent translocation with human migration. Finally, genome-wide analyses between human samples and between human and non-human primate samples reveal local regions of genetic differentiation between geographically distinct populations. These data provide insight into zoonotic reservoirs of human-infective T. trichiura and will support future efforts toward the implementation of genomic epidemiology of this globally important helminth.


Assuntos
Tricuríase , Trichuris , Animais , Estudo de Associação Genômica Ampla , Humanos , Metagenômica , Filogenia , Primatas/genética , Tricuríase/epidemiologia , Trichuris/genética
14.
Lancet Infect Dis ; 22(11): e341-e347, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35850127

RESUMO

In 2020, WHO recognised the importance of strongyloidiasis alongside soil-transmitted helminths (STH) in their 2021-30 roadmap, which aspires to target Strongyloides stercoralis with preventive chemotherapy by use of ivermectin. Combination treatment with both albendazole, the primary drug used to treat STH, and ivermectin, would improve the efficiency of mass drug administration targeting both STH and S stercoralis. In this Personal View, we discuss the challenges and opportunities towards the development of an efficient control programme for strongyloidiasis, particularly if it is to run concurrently with STH control. We argue the need to define the prevalence threshold to implement preventive chemotherapy for S stercoralis, the target populations and optimal dosing schedules, and discuss the added benefits of a fixed-dose coformulation of ivermectin and albendazole. Implementation of an efficient control programme will require improvements to current diagnostics, and validation of new diagnostics, to target and monitor S stercoralis infections, and consideration of the challenges of multispecies diagnostics for S stercoralis and STH control. Finally, the evolution of ivermectin resistance represents a credible risk to control S stercoralis; we argue that genome-wide approaches, together with improved genome resources, are needed to characterise and prevent the emergence of resistance. Overcoming these challenges will help to reduce strongyloidiasis burden and enhance the feasibility of controlling it worldwide.


Assuntos
Anti-Helmínticos , Helmintos , Strongyloides stercoralis , Estrongiloidíase , Animais , Humanos , Estrongiloidíase/tratamento farmacológico , Estrongiloidíase/prevenção & controle , Albendazol/uso terapêutico , Ivermectina/uso terapêutico , Solo/parasitologia , Anti-Helmínticos/uso terapêutico
15.
Trends Parasitol ; 38(10): 831-840, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35810065

RESUMO

Rapid advancement in high-throughput sequencing and analytical approaches has seen a steady increase in the generation of genomic resources for helminth parasites. Now, helminth genomes and their annotations are a cornerstone of numerous efforts to compare genetic and transcriptomic variation, from single cells to populations of globally distributed parasites, to genome modifications to understand gene function. Our understanding of helminths is increasingly reliant on these genomic resources, which are primarily static once published and vary widely in quality and completeness between species. This article seeks to highlight the cause and effect of this variation and argues for the continued improvement of these genomic resources - even after their publication - which is necessary to provide a more accurate and complete understanding of the biology of these important pathogens.


Assuntos
Helmintos , Parasitos , Animais , Genoma , Genoma Helmíntico/genética , Genômica , Helmintos/genética , Parasitos/genética
16.
PLoS Pathog ; 18(6): e1010545, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35696434

RESUMO

The antiparasitic drug ivermectin plays an essential role in human and animal health globally. However, ivermectin resistance is widespread in veterinary helminths and there are growing concerns of sub-optimal responses to treatment in related helminths of humans. Despite decades of research, the genetic mechanisms underlying ivermectin resistance are poorly understood in parasitic helminths. This reflects significant uncertainty regarding the mode of action of ivermectin in parasitic helminths, and the genetic complexity of these organisms; parasitic helminths have large, rapidly evolving genomes and differences in evolutionary history and genetic background can confound comparisons between resistant and susceptible populations. We undertook a controlled genetic cross of a multi-drug resistant and a susceptible reference isolate of Haemonchus contortus, an economically important gastrointestinal nematode of sheep, and ivermectin-selected the F2 population for comparison with an untreated F2 control. RNA-seq analyses of male and female adults of all populations identified high transcriptomic differentiation between parental isolates, which was significantly reduced in the F2, allowing differences associated specifically with ivermectin resistance to be identified. In all resistant populations, there was constitutive upregulation of a single gene, HCON_00155390:cky-1, a putative pharyngeal-expressed transcription factor, in a narrow locus on chromosome V previously shown to be under ivermectin selection. In addition, we detected sex-specific differences in gene expression between resistant and susceptible populations, including constitutive upregulation of a P-glycoprotein, HCON_00162780:pgp-11, in resistant males only. After ivermectin selection, we identified differential expression of genes with roles in neuronal function and chloride homeostasis, which is consistent with an adaptive response to ivermectin-induced hyperpolarisation of neuromuscular cells. Overall, we show the utility of a genetic cross to identify differences in gene expression that are specific to ivermectin selection and provide a framework to better understand ivermectin resistance and response to treatment in parasitic helminths.


Assuntos
Anti-Helmínticos , Haemonchus , Nematoides , Animais , Anti-Helmínticos/farmacologia , Cloretos/metabolismo , Cloretos/farmacologia , Resistência a Medicamentos/genética , Feminino , Homeostase , Ivermectina/metabolismo , Ivermectina/farmacologia , Ivermectina/uso terapêutico , Masculino , Nematoides/genética , Plasticidade Neuronal , Ovinos/genética , Transcriptoma
17.
Parasit Vectors ; 15(1): 118, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35365192

RESUMO

Gastrointestinal (GI) helminth infections cause significant morbidity in both humans and animals worldwide. Specific and sensitive diagnosis is central to the surveillance of such infections and to determine the effectiveness of treatment strategies used to control them. In this article, we: (i) assess the strengths and limitations of existing methods applied to the diagnosis of GI helminth infections of humans and livestock; (ii) examine high-throughput sequencing approaches, such as targeted molecular barcoding and shotgun sequencing, as tools to define the taxonomic composition of helminth infections; and (iii) discuss the current understanding of the interactions between helminths and microbiota in the host gut. Stool-based diagnostics are likely to serve as an important tool well into the future; improved diagnostics of helminths and their environment in the gut may assist the identification of biomarkers with the potential to define the health/disease status of individuals and populations, and to identify existing or emerging anthelmintic resistance.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Microbioma Gastrointestinal/genética , Trato Gastrointestinal , Metabolômica , Metagenômica
18.
Trends Parasitol ; 38(5): 351-352, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35246385

RESUMO

The anthelmintic praziquantel (PZQ) is an essential tool in controlling schistosomiasis, so reports of reduced PZQ efficacy are of great public health concern. Le Clec'h et al. recently identified a gene responsible for PZQ resistance in experimentally selected resistant Schistosoma mansoni. The importance of this locus in natural infections remains to be established.


Assuntos
Anti-Helmínticos , Esquistossomose mansoni , Animais , Anti-Helmínticos/farmacologia , Anti-Helmínticos/uso terapêutico , Resistência a Medicamentos/genética , Praziquantel/farmacologia , Praziquantel/uso terapêutico , Schistosoma mansoni/genética , Esquistossomose mansoni/tratamento farmacológico
19.
Artigo em Inglês | MEDLINE | ID: mdl-34959200

RESUMO

Haemonchus contortus is a pathogenic gastrointestinal nematode of small ruminants and, in part due to its capacity to develop resistance to drugs, contributes to significant losses in the animal production sector worldwide. Despite decades of research, comparatively little is known about the specific mechanism(s) driving resistance to drugs such as ivermectin in this species. Here we describe a genome-wide approach to detect evidence of selection by ivermectin treatment in a field population of H. contortus from Sweden, using parasites sampled from the same animals before and seven days after ivermectin exposure followed by whole-genome sequencing. Despite an 89% reduction in parasites recovered after treatment measured by the fecal egg count reduction test, the surviving population was highly genetically similar to the population before treatment, suggesting that resistance has likely evolved over time and that resistance alleles are present on diverse haplotypes. Pairwise gene and SNP frequency comparisons indicated the highest degree of differentiation was found at the terminal end of chromosome 4, whereas the most striking difference in nucleotide diversity was observed in a region on chromosome 5 previously reported to harbor a major quantitative trait locus involved in ivermectin resistance. These data provide novel insight into the genome-wide effect of ivermectin selection in a field population as well as confirm the importance of the previously established quantitative trait locus in the development of resistance to ivermectin.


Assuntos
Anti-Helmínticos , Hemoncose , Haemonchus , Doenças dos Ovinos , Animais , Anti-Helmínticos/farmacologia , Anti-Helmínticos/uso terapêutico , Resistência a Medicamentos/genética , Hemoncose/tratamento farmacológico , Hemoncose/parasitologia , Hemoncose/veterinária , Haemonchus/genética , Ivermectina/farmacologia , Ivermectina/uso terapêutico , Ovinos , Doenças dos Ovinos/tratamento farmacológico , Doenças dos Ovinos/epidemiologia , Doenças dos Ovinos/parasitologia , Suécia/epidemiologia
20.
Wellcome Open Res ; 6: 259, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34796277

RESUMO

We present a genome assembly and annotation of an individual female Cercopithifilaria johnstoni, a parasitic filarial nematode that is transmitted by hard ticks (Ixodidae) to infect a broad range of native Australian murid and marsupial hosts. The genome sequence is 76.9 Mbp in length, and although in draft form (N50 = 99 kbp, N50[n] = 232), is largely complete based on universally conserved orthologs (BUSCOs; genome = 94.9%, protein = 96.5%) and relative to other related filarial species. These data represent the first genomic resources for the genus Cercopithifilaria, a group of parasites with a broad host range, and form the basis for comparative analysis with the human-infective parasite, Onchocerca volvulus, both of which are responsible for similar eye and skin pathologies in their respective hosts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...